Windowing TVF
在Flink1.13版本之后出现的替代之前的Group window的产物,官网描述其 is more powerful and effective
//TVF 中的tumble滚动窗口 //tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在 //特别注意!!!! //如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
sql实现TVF的tumble窗口实现
package net.cyan.FlinkSql.TVF; import net.cyan.POJO.WaterSensor; import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; import java.time.Duration; import static org.apache.flink.table.api.Expressions.$; public class Demo1_Window_TableAPI_Tumble { public static void main(String[] args) { //创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //创建表的运行环境 StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env); env.setParallelism(1); DataStream<WaterSensor> waterSensorStream = env.fromElements( new WaterSensor("sensor_1", 1000L, 10), new WaterSensor("sensor_1", 2000L, 20), new WaterSensor("sensor_2", 3000L, 30), new WaterSensor("sensor_1", 4000L, 40), new WaterSensor("sensor_1", 5000L, 50), new WaterSensor("sensor_2", 6000L, 60)) .assignTimestampsAndWatermarks( WatermarkStrategy .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3)) .withTimestampAssigner((ws, ts) -> ws.getTs()) ); //创建table Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime()); //创建表 tabEnv.createTemporaryView("sensor",table); //执行sql //TVF 中的tumble滚动窗口 //tumble(table sensor,descriptor(et),interval '5' second ):作为一张表存在 //特别注意!!!! //如果在sql中使用了tumble窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段 tabEnv.sqlQuery("select" + " window_start,window_end,id," + "sum(vc) sum_vc" + " from table (tumble(table sensor,descriptor(et),interval '5' second ))" + " group by window_start,window_end,id ") .execute() .print(); } }
sql实现TVF的滑动窗口
//TVF 中的hop滚动窗口 //hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在 //first interval :滑动步长, second interval :窗口长度 //特别注意!!!! // 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错 // 例如:滑动步长为2,窗口长度就不能为5,可以为6 // 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
package net.cyan.FlinkSql.TVF; import net.cyan.POJO.WaterSensor; import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; import java.time.Duration; import static org.apache.flink.table.api.Expressions.$; public class Demo2_Window_TVF_Hop { public static void main(String[] args) { //创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //创建表的运行环境 StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env); env.setParallelism(1); DataStream<WaterSensor> waterSensorStream = env.fromElements( new WaterSensor("sensor_1", 1000L, 10), new WaterSensor("sensor_1", 2000L, 20), new WaterSensor("sensor_2", 3000L, 30), new WaterSensor("sensor_1", 4000L, 40), new WaterSensor("sensor_1", 5000L, 50), new WaterSensor("sensor_2", 6000L, 60)) .assignTimestampsAndWatermarks( WatermarkStrategy .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3)) .withTimestampAssigner((ws, ts) -> ws.getTs()) ); //创建table Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime()); //创建表 tabEnv.createTemporaryView("sensor",table); //执行sql //TVF 中的hop滚动窗口 //hop(table sensor,descriptor(et),interval '2' second,interval '5' second ):作为一张表存在 //first interval :滑动步长, second interval :窗口长度 //特别注意!!!! // 1.TVF 中滑动窗口的滑动步长与窗口长度必须是整数倍的关系,不然会报错 // 例如:滑动步长为2,窗口长度就不能为5,可以为6 // 2.如果在sql中使用了hop窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段 tabEnv.sqlQuery("select" + " window_start,window_end,id," + "sum(vc) sum_vc" + " from table (hop(table sensor,descriptor(et),interval '2' second,interval '6' second ))" + " group by window_start,window_end,id ") .execute() .print(); } }
sql实现TVF的累计窗口
累计窗口的应用:
需求:每天每隔一个小时统计一次当天的pv(浏览量)
流的方式如何解决:
1、用滚动窗口, 窗口长度设为1h
2、每天的第一个窗口清除状态,后面的不清,进行状态的累加
或者
用滚动窗口,长度设置为2day
自定义触发器,每隔1小时对窗内的元素计算一次,不关闭窗口
sql的方式如何解决?
直接使用累计窗口cumulate
//TVF 中的cumulate累计窗口 //cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在 //tableName:表名 //timecol:时间属性字段 //step:累计步长,跟滑动步长类似 //size:窗口长度 //特别注意!!!! //1.累计窗口的步长与窗口长度同样是需要整数倍关系 // 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段
package net.cyan.FlinkSql.TVF; import net.cyan.POJO.WaterSensor; import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.table.api.Table; import org.apache.flink.table.api.bridge.java.StreamTableEnvironment; import java.time.Duration; import static org.apache.flink.table.api.Expressions.$; public class Demo3_Window_TVF_cumulate { public static void main(String[] args) { //创建执行环境 StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); //创建表的运行环境 StreamTableEnvironment tabEnv = StreamTableEnvironment.create(env); env.setParallelism(1); DataStream<WaterSensor> waterSensorStream = env.fromElements( new WaterSensor("sensor_1", 1000L, 10), new WaterSensor("sensor_1", 2000L, 20), new WaterSensor("sensor_2", 3000L, 30), new WaterSensor("sensor_1", 4000L, 40), new WaterSensor("sensor_1", 5000L, 50), new WaterSensor("sensor_2", 6000L, 60)) .assignTimestampsAndWatermarks( WatermarkStrategy .<WaterSensor>forBoundedOutOfOrderness(Duration.ofSeconds(3)) .withTimestampAssigner((ws, ts) -> ws.getTs()) ); //创建table Table table = tabEnv.fromDataStream(waterSensorStream,$("id"),$("ts"),$("vc"),$("et").rowtime()); //创建表 tabEnv.createTemporaryView("sensor",table); //执行sql //TVF 中的cumulate累计窗口 //cumulate(table tableName,descriptor(timecol),step,size):作为一张表存在 //tableName:表名 //timecol:时间属性字段 //step:累计步长,跟滑动步长类似 //size:窗口长度 //特别注意!!!! //1.累计窗口的步长与窗口长度同样是需要整数倍关系 // 2.如果在sql中使用了cumulate窗口,则一定需要group by,而且group by后一定有window_start,window_end两个字段 tabEnv.sqlQuery("select" + " window_start,window_end,id," + " sum(vc) sum_vc" + " from table (cumulate(table sensor,descriptor(et),interval '2' second,interval '6' second)) " + "group by window_start,window_end,id") .execute() .print(); } }
标签:
留言评论