CodeTON Round 3 (Div. 1 + Div. 2, Rated, Prizes!) A-D

乎语百科 287 0

比赛链接

A

题解

知识点:贪心。

注意到 \(a[1] \neq 1\) , \(1\) 永远不可能换到前面;\(a[1] = 1\) 可以交换后面任意元素。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

int a[20];
bool solve() {
    int n;
    cin >> n;
    for (int i = 1;i <= n;i++) cin >> a[i];
    if (a[1] == 1) cout << "YES" << '\n';
    else cout << "NO" << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

B

题解

知识点:贪心,枚举。

分两类,一种是纯 \(1\) 或 \(0\) ,另一种是杂合。

显然后者的情况中,把所有数字全选了是最优的;前者枚举一下所有纯子串即可。两种情况,取最大值。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

bool solve() {
    int n;
    cin >> n;
    string s;
    cin >> s;
    s = "?" + s;
    int cnt0 = 0, cnt1 = 0;
    for (int i = 1;i <= n;i++) {
        if (s[i] == '0') cnt0++;
        else cnt1++;
    }
    ll mx = 1LL * cnt0 * cnt1;
    int i = 1, j = 1;
    while (i <= n) {
        while (j <= n && s[j] == s[i]) j++;
        mx = max(mx, 1LL * (j - i) * (j - i));
        i = j;
    }
    cout << mx << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

C

题解

知识点:构造。

注意到,只有 \(a=b\) 或者 \(a\) 每位都不等于 \(b\) 的对应位才可行。

考虑先把 \(a\) 串的 \(1\) 一个一个消掉,然后发现 \(b\) 会出现全 \(0\) 全 \(1\) 的情况,接下来分类讨论:

  1. 如果 \(a = b\) ,那么 \(a\) 中 \(1\) 为偶数时得到的 \(b\) 是 \(0\) ,否则是 \(1\) 。
  2. 如果 \(a\) 每位都不等于 \(b\) 的对应位 ,那么消掉一个 \(1\) 以后又会回到情况1,因此和情况 \(1\) 相反。

全是 \(0\) 直接可以结束,全是 \(1\) 可以先把 \([1,n]\) 取反,然后选择 \([1,1],[2,n]\) 即可。

时间复杂度 \(O(n)\)

空间复杂度 \(O(n)\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

bool solve() {
    int n;
    cin >> n;
    string a, b;
    cin >> a >> b;
    a = "?" + a;
    b = "?" + b;
    int cnt = 0;
    for (int i = 1;i <= n;i++) cnt += a[i] == b[i];
    if (cnt != 0 && cnt != n) return 0;
    bool flag = cnt == n ? 0 : 1;
    vector<pair<int, int>> ans;
    for (int i = 1;i <= n;i++) {
        if (a[i] == '1') {
            ans.push_back({ i, i });
            flag ^= 1;
        }
    }
    if (flag) {
        ans.push_back({ 1,n });
        ans.push_back({ 1,1 });
        ans.push_back({ 2,n });
    }
    cout << "YES" << '\n';
    cout << ans.size() << '\n';
    for (auto [i, j] : ans) cout << i << ' ' << j << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--) {
        if (!solve()) cout << "NO" << '\n';
    }
    return 0;
}

D

题解

知识点:质因数分解,容斥原理,数论。

题目要求我们每个 \(b_i\) 的方案数,然后得到总的方案数。

显然有 \(gcd(a_{i-1},b_i) = a_i\) ,注意到 \(a_i\) 必须是 \(a_{i-1}\) 的因子否则不可能得到答案,因此特判一下 \(a_{i} | a_{i-1}\) 。

于是,我们要找到所有的 \(b_i\) ,满足 \(gcd(\frac{a_{i-1}}{a_i},\frac{b_i}{a_i}) = 1\) 且 \(a_i | b_i\) ,其中 \(\frac{b_i}{a_i} \in [1,\frac{m}{a_i}]\) ,即我们从 \([1,\frac{m}{a_i}]\) 整数中找到和 \(\frac{a_{i-1}}{a_i}\) 互素的个数。

这是一个典型的容斥问题。先对 \(\frac{a_{i-1}}{a_i}\) 分解素因数,得到其素因子种类。我们先计算出区间中包含 \(\frac{a_{i-1}}{a_i}\) 因子的数的个数,注意奇加偶减,然后用总数 \(\frac{m}{a_i}\) 减去个数,即与之互素的数的个数,于是我们就得到了 \(b_i\) 的种类。

遍历每个 \(a_i\) 即可。

时间复杂度 \(O(n(\log a_i + 10\cdot 2^{10}))\)

代码

#include <bits/stdc++.h>
#define ll long long

using namespace std;

const int mod = 998244353;

int a[200007];

bool vis[100007];
int prime[100007];
int cnt;
void euler_screen(int n) {
    for (int i = 2;i <= n;i++) {
        if (!vis[i]) prime[++cnt] = i;
        for (int j = 1;j <= cnt && i * prime[j] <= n;j++) {
            vis[i * prime[j]] = 1;
            if (!(i % prime[j])) break;//如果到了i的最小质因子就不用继续,因为接下去的数x一定能被(i,x)之间的数筛掉
        }
    }
}///欧拉筛,O(n),每个合数只会被最小质因子筛掉

bool solve() {
    int n, m;
    cin >> n >> m;
    for (int i = 1;i <= n;i++) cin >> a[i];
    int ans = 1;
    for (int i = 2;i <= n;i++) {
        if (a[i - 1] % a[i]) {
            ans = 0;
            break;
        }

        int d = a[i - 1] / a[i];//不能出现的因子
        int base = m / a[i];//包含a[i]的数个数

        vector<int> ft;//对d分解因子种类
        for (int j = 1;j <= cnt && prime[j] <= d / prime[j];j++) {
            if (d % prime[j] == 0) ft.push_back(prime[j]);
            while (d % prime[j] == 0) d /= prime[j];
        }
        if (d > 1) ft.push_back(d);

        int sum = 0;//容斥原理,求[1,base]中没有d中因子的数个数
        for (int j = 1; j < (1 << ft.size()); j++) {
            int mul = 1, feat = 0;
            for (int k = 0; k < ft.size(); k++) {
                if (j & (1 << k)) {
                    mul *= ft[k];
                    feat++;
                }
            }
            if (feat & 1) sum = (sum + 1LL * base / mul % mod) % mod;
            else sum = (sum - 1LL * base / mul % mod + mod) % mod;
        }
        sum = (base - sum + mod) % mod;

        ans = 1LL * ans * sum % mod;
    }
    cout << ans << '\n';
    return true;
}

int main() {
    std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
    int t = 1;
    cin >> t;
    euler_screen(100007);
    while (t--) {
        if (!solve()) cout << -1 << '\n';
    }
    return 0;
}

标签:

留言评论

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~