P 算法与 K 算法
作者:Grey
原文地址:
说明
P 算法和 K 算法主要用来解决最小生成树问题,即:不破坏连通性删掉某些边,使得整体的权重最小。
测评链接:牛客-最小生成树
K 算法
K 算法使用的核心数据结构是并查集,然后将边权值排序。
1)总是从权值最小的边开始考虑,依次考察权值依次变大的边
2)当前的边要么进入最小生成树的集合,要么丢弃
3)如果当前的边进入最小生成树的集合中不会形成环,就要当前边
4)如果当前的边进入最小生成树的集合中会形成环,就不要当前边
5)考察完所有边之后,最小生成树的集合也得到了
边存在小根堆里面,保证每次弹出的都是权重最小的值
点存在并查集中,每次加入一个边,就把两个边的点 union
完整代码如下
import java.util.Arrays;
import java.util.Comparator;
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
int[][] graph = new int[m][3];
for (int i = 0; i < m; i++) {
// from
graph[i][0] = in.nextInt();
// to
graph[i][1] = in.nextInt();
// weight
graph[i][2] = in.nextInt();
}
System.out.println(k(graph, n));
in.close();
}
// k算法生成最小生成树
public static int k(int[][] graph, int n) {
UnionFind uf = new UnionFind(n);
Arrays.sort(graph, Comparator.comparingInt(o -> o[2]));
int ans = 0;
for (int[] edge : graph) {
if (!uf.same(edge[0], edge[1])) {
uf.union(edge[0], edge[1]);
ans += edge[2];
}
}
return ans;
}
public static class UnionFind {
private final int[] parent;
private final int[] size;
private final int[] help;
public UnionFind(int n) {
parent = new int[n + 1];
size = new int[n + 1];
help = new int[n + 1];
for (int i = 1; i < n; i++) {
parent[i] = i;
size[i] = 1;
}
}
public boolean same(int a, int b) {
return find(a) == find(b);
}
private int find(int a) {
int index = 0;
while (a != parent[a]) {
help[index++] = a;
a = parent[a];
}
index--;
while (index > 0) {
parent[help[index--]] = a;
}
return a;
}
public void union(int a, int b) {
int f1 = find(a);
int f2 = find(b);
if (f1 != f2) {
int size1 = size[f1];
int size2 = size[f2];
if (size1 > size2) {
parent[f2] = f1;
size[f2] = 0;
size[f1] = size1 + size2;
} else {
parent[f1] = f2;
size[f1] = 0;
size[f2] = size1 + size2;
}
}
}
}
}
P 算法
1)可以从任意节点出发来寻找最小生成树
2)某个点加入到被选取的点中后,解锁这个点出发的所有新的边
3)在所有解锁的边中选最小的边,然后看看这个边会不会形成环
4)如果会,不要当前边,继续考察剩下解锁的边中最小的边,重复3)
5)如果不会,要当前边,将该边的指向点加入到被选取的点中,重复2)
6)当所有点都被选取,最小生成树就得到了
完整代码如下
import java.util.*;
public class Main {
public static Set<Edge> P(Graph graph) {
// 解锁的边进入小根堆
PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(Comparator.comparingInt(o -> o.weight));
// 哪些点被解锁出来了
HashSet<Node> nodeSet = new HashSet<>();
Set<Edge> result = new HashSet<>(); // 依次挑选的的边在result里
for (Node node : graph.nodes.values()) { // 随便挑了一个点
// node 是开始点
if (!nodeSet.contains(node)) {
nodeSet.add(node);
for (Edge edge : node.edges) { // 由一个点,解锁所有相连的边
priorityQueue.add(edge);
}
while (!priorityQueue.isEmpty()) {
Edge edge = priorityQueue.poll(); // 弹出解锁的边中,最小的边
Node toNode = edge.to; // 可能的一个新的点
if (!nodeSet.contains(toNode)) { // 不含有的时候,就是新的点
nodeSet.add(toNode);
result.add(edge);
for (Edge nextEdge : toNode.edges) {
priorityQueue.add(nextEdge);
}
}
}
}
// 如果有森林,就不能break,如果没有森林,就可以break
//break;
}
return result;
}
public static class Graph {
public HashMap<Integer, Node> nodes;
public HashSet<Edge> edges;
public Graph(int n) {
nodes = new HashMap<>();
edges = new HashSet<>(n);
}
}
public static class Node {
public int value;
public int in;
public int out;
public ArrayList<Node> nexts;
public ArrayList<Edge> edges;
public Node(int value) {
this.value = value;
in = 0;
out = 0;
nexts = new ArrayList<>();
edges = new ArrayList<>();
}
}
public static class Edge {
public int weight;
public Node from;
public Node to;
public Edge(int weight, Node from, Node to) {
this.weight = weight;
this.from = from;
this.to = to;
}
}
public static void main(String[] args) {
Scanner in = new Scanner(System.in);
int n = in.nextInt();
int m = in.nextInt();
Graph graph = new Graph(n);
for (int i = 0; i < m; i++) {
int from = in.nextInt();
int to = in.nextInt();
int weight = in.nextInt();
if (!graph.nodes.containsKey(from)) {
graph.nodes.put(from, new Node(from));
}
if (!graph.nodes.containsKey(to)) {
graph.nodes.put(to, new Node(to));
}
Node fromNode = graph.nodes.get(from);
Node toNode = graph.nodes.get(to);
Edge fromToEdge = new Edge(weight, fromNode, toNode);
Edge toFromEdge = new Edge(weight, toNode, fromNode);
fromNode.nexts.add(toNode);
fromNode.out++;
fromNode.in++;
toNode.out++;
toNode.in++;
fromNode.edges.add(fromToEdge);
toNode.edges.add(toFromEdge);
graph.edges.add(fromToEdge);
graph.edges.add(toFromEdge);
}
Set<Edge> result = P(graph);
int sum = 0;
for (Edge edge : result) {
sum += edge.weight;
}
System.out.println(sum);
in.close();
}
}
更多
参考资料
标签:
留言评论