Petrozavodsk Winter Training Camp 2016: Moscow SU Trinity Contest

乎语百科 358 0
题目列表

A.ABBA

题意:就是问你一个矩阵能由几个行向量表示出来

Solution

其实就是求矩阵的秩,但是会被卡精度(被卡了好几发),直接抄个矩阵求秩的板子就AC了

Code
#define CLR(x) memset(x,0,sizeof(x))//定义宏
using namespace std;
double mat[300][300];//定义矩阵
int r,c;
int cmp(double x,double y){
    double v = x - y;
    if(v > 1e-1) return 1;//1e-1表示10^-1
    if(v < -1e-1) return -1;
    return 0;
}
//乘相应值
void subrow(int r1 , int r2,double temp){
    for(int i = 1 ; i <= c ; i++){
        mat[r1][i] -= mat[r2][i]*temp;
    }
}
//交换数值
void swaprow(int r1 , int r2){
    for(int i = 1 ; i <= c ; i++){
        swap(mat[r1][i],mat[r2][i]);
    }
}
//判断秩(主要判定函数)
void solve() {
    for (int i = 1; i <= r; i++) {
        for (int cal = i; cal <= c; cal++) { //对这 i 行的每一列来找,要是这列本身和之下的列全是0,则找 i 行下一列。
            bool flag = true;
            if (cmp(mat[i][cal], 0) == 0) {
                flag = false;  //如果第 i 行 cal 列这个位置是 0 ,那找找这列下面的行有没有
                for (int j = i + 1; j <= r; j++) {   //一个不为 0 的数 , 要是有 , 就将它与 i 行交换。
                    int tmp = cmp(mat[j][cal], 0);
                    if (tmp == 1 || tmp == -1) {
                        flag = true;
                        swaprow(j, i);
                        break;
                    }
                }
            }
            if (!flag) continue;//如果这列全是 0 , 到下一列。
            int v = i;                                 //如果发现这列有值不为 0 并把它跟 i 行交换后,
            int maxn = mat[i][cal];                     //就再找这列有没有比 i 行 这个位置的值更大的值,如果有,将那一行
            for (int j = i + 1; j <= r; j++) {            //跟i行交换。(听说是为了减小误差)
                if (cmp(mat[j][cal], mat[i][cal]) == 1) {
                    v = j;
                    maxn = mat[j][cal];
                }
            }
            if (v != i) {
                swaprow(i, v);
            }
            for (int j = 1; j <= r; j++) {
                if (j == i) continue;
                if (cmp(mat[i][cal], 0) == 0) continue;
                double tmp = mat[j][cal] / mat[i][cal];
                subrow(j, i, tmp);
            }
            break;
        }
    }
}
int main() {
    CLR(mat);
    scanf("%d %d", &r, &c);
    for (int i = 1; i <= r; i++) {
        for (int j = 1; j <= c; j++) {
            scanf("%lf", &mat[i][j]);
        }
    }
    solve();
    bool f = false;
    int ans = 0;
    for (int i = r; i >= 1; i--) {
        for (int j = 1; j <= c; j++) {
            int tmp = cmp(mat[i][j], 0);
            if (tmp == 1 || tmp == -1) {
                f = true;
                break;
            }
        }
        if (f) {
            ans = i;
            break;
        }
    }
    printf("%d\n", ans);//输出秩
    return 0;
}

E.Elvis Presley

题意: 在形如二叉树的DAG上选出一个包含a,b的极大点集,使这些点互不可达,且选的个数最少

Solution

阅读理解题

Code

int main() {
    int a, b;
    cin >> a >> b;
    if (a > b) swap(a, b);
    if (a == 1) {
        cout << -1;
        return 0;
    }
    set stt;
    int now = a;
    while (now) {
        stt.insert(now);
        now /= 2;
    }
    now = b;
    int lca;
    while (now) {
        if (stt.find(now) != stt.end()) {
            if (now == a) {
                cout << -1;
                return 0;
            }
            lca = now;
            break;
        }
        now /= 2;
    }
    now = b;
    vector ans;
    while (now / 2 != lca) {
        if (now % 2) ans.push_back(now / 2 * 2);
        else ans.push_back(now / 2 * 2 + 1);
        now /= 2;
    }
    now = a;
    while (now / 2 != lca) {
        if (now % 2) ans.push_back(now / 2 * 2);
        else ans.push_back(now / 2 * 2 + 1);
        now /= 2;
    }
    now = lca;
    while (now != 1) {
        if (now % 2) ans.push_back(now / 2 * 2);
        else ans.push_back(now / 2 * 2 + 1);
        now /= 2;
    }
    ans.push_back(a), ans.push_back(b);
    sort(ans.begin(), ans.end());
    for (int i: ans) 	cout << i << " ";
}

G.Green Day

题意:略

Solution

题解:仿样例,凑出来的,神奇的AC姿势

Code
void solve() {
    int k;
    cin >> k;
    cout<< 2*k << endl;
    for (int i = 1; i <= k; ++i) {
        for (int j = 1; j <= k; ++j) {
            cout << i << " " << i + j<< endl;
        }
        for (int j = k+1 ; j <= 2 * k-1 ; ++j) {
            cout << i + k << " " << (i + j-1)%(2*k)+1 << endl;
        }
    }
}

J. Burnished Security Updates

题意:给定一棵边权为小写字母的树和一个目标串$S$ , 问是否存在一条简单路径,使S成为该路径构成的字符串的子序列。若存在,输出任何一条合法路径的两个端点$($先起点,后终点$)$ ,否则输出-1 -1。

Solution

思路: ​ 树形dp维护以某个节点为根的子树中,以根为路径的一个端点,可以在$S$ 中匹配的最长前缀和后缀。当某棵子树的前后缀已经覆盖了$S$,并且前后缀的路径不重复,就是合法路径。保证不重复的方法详见代码。

Code
int n, m, idx;
string s;
int head[maxn];
pii st[maxn], ed[maxn], ans;
struct Edge {
    int to, nxt; char c;
} edge[maxn * 2];
void addedge(int u, int v, char c) {
    edge[idx] = {v, head[u], c};
    head[u] = idx ++;
    edge[idx] = {u, head[v], c};
    head[v] = idx ++;
}
void dfs(int u, int fa) {
    st[u] = ed[u] = {0, u};
    for(int i = head[u]; ~i; i = edge[i].nxt) {
        int v = edge[i].to; char c = edge[i].c;
        if(v == fa) continue;
        dfs(v, u);
        if(c == s[st[v].x + 1] && st[v].x < m) st[v].x ++;
        if(c == s[m - ed[v].x] && ed[v].x < m) ed[v].x ++;
        // 路径不重复
        if(st[u].x + ed[v].x >= m) ans = {st[u].y, ed[v].y};
        if(ed[u].x + st[v].x >= m) ans = {st[v].y, ed[u].y};
        st[u] = max(st[u], st[v]);
        ed[u] = max(ed[u], ed[v]);
    }
}
int main() {
    ios;
    cin >> n >> m;
    for(int i = 1; i <= n; i ++) head[i] = -1;
    for(int i = 1; i < n; i ++) {
        int u, v; char c;
        cin >> u >> v >> c;
        addedge(u, v, c);
    }
    cin >> s;
    s = "?" + s;
    ans = {-1, -1};
    dfs(1, 0);
    cout << ans.x << " " << ans.y;
}

标签:

留言评论

  • 这篇文章还没有收到评论,赶紧来抢沙发吧~